Икона эпохиИкона эпохи: Мауриц Корнелис Эшер. Картина относительность


Мауриц Корнелис Эшер — Look At Me

В рубрике «Икона эпохи» мы рассказываем о художниках, дизайнерах, режиссёрах, музыкантах и других творческих профессионалах, которым удалось создать узнаваемый стиль и повлиять на современную культуру. Наш герой на этой неделе — художник-график Мауриц Корнелис Эшер, автор знаменитой «Относительности» и других работ с оптическими иллюзиями. Выставка Эшера открыта в московском ММОМА до 9 февраля 2014 года. 

 

  

Мауриц Корнелис Эшер

(Maurits Cornelis Escher)

1898-1972, Нидерланды

художник-график

  

 

Ранние годы и учеба в Харлеме

Мауриц Корнелис Эшер родился в 1898 году в нидерландском городе Леуварден. Он был младшим сыном в многдетной семье инженера. В 1904 году будущий художник, его братья и родители переехали в Арнем, где мальчик учился столярному делу и музыке, но быстро бросил занятия из-за проблем со здоровьем. После окончания средней школы в 1918 году Эшер поступил в Делфтский технический университет, но снова был отчислен — из-за плохого самочувствия он не справлялся с заданиями. Однако затем он начал изучать архитектуру в Харлеме и успешно закончил вуз в 1922 году. Кроме того, в молодости Эшер увлекался литературой и пробовал свои силы в литературе.

С самого начала учебы в Харлеме Эшер понял, что рисовать он хочет намного больше, чем проектировать. Он показал свои графические работы преподавателю Самуэлю Йессуруну де Меските, который поддержал решение молодого художника. К тому времени де Мескита был уже известным художником-графиком: его литографии, гравюры на дереве и офорты очень повлияли на творчество Эшера. Художник дружил со своим учителем до смерти де Мескиты — в 1944 году он был схвачен нацистами, и скончался в Освенциме. 

Жизнь в Италии

Закончив учёбу, в 1922 году Эшер отправился в путешествие по Испании и Италии. Во время традиционного для художников гран-тура, Эшер впервые посетил Альгамбру — дворец в Гранаде, построенный во времена мусульманского господства в Испании. Мусульманские узоры и мозаики, которыми украшена Альгамбра, очень повлияли на творчество Эшера: он не раз использовал приемы исламских художников для создания своих работ.

Икона эпохи: Мауриц Корнелис Эшер. Изображение № 2.Икона эпохи: Мауриц Корнелис Эшер. Изображение № 3.

Мозаики в Альгамбре, которые вдохновляли Эшера

В 1924 году Эшер с женой Джеттой Умикер поселился в Риме. Он провел в Италии одиннадцать лет, и каждый год художник путешествовал по стране, делая наброски пейзажей и архитектуры. Затем он использовал эти зарисовки для создания своих литографий и ксилографий. Например, на заднем плане литографии «Водопад», созданной в 1961 году, изображены террасы, которые Эшер рисовал в Италии. Кроме набросков, есть и законченные графические работы, сделанные художником во время жизни в Италии: например, литографии «Кастровальва» 1930 года и «Атрани» 1931 года. Обе работы изображают места, которые посетил Эшер во время поездок.

Невозможные фигуры 

Еще в Альгамбре Эшер заинтересовался принципом тесселяции — приемом, позволяющим разделить плоскость на части, которые полностью покрывают ее, не пересекаясь и не накладываясь друг на друга. Заинтересовавшись математикой, Эшер изучил работу венгерского учёного Дьёрдя Пойа, посвященную группам симметрий замощений, и начал создавать работы на основе этого исследования. Однако Эшер придумывал орнаменты, состоящие не из геометрических фигур, а из насекомых, птиц, рыб, собак, крабов, лошадей и других живых существ. Эти графические работы вошли в серию «Регулярное деление плоскости», которая затем была издана как отдельная книга в 1958 году — правда, принцип тесселяции так интересовал Эшера, что он продолжал эту серию до конца 1960-х и создал 137 работ. 

Икона эпохи: Мауриц Корнелис Эшер. Изображение № 4.

«Относительность», 1953 год

Однако наибольшую известность приобрели «невозможные фигуры» Эшера. Он исследовал пародоксы, позникающие при изображении трехмерного пространства и делал рисунки интерьеров и архитектурных сооружений, которые, на первый взгляд, кажутся верными, но при внимательном изучении работы зритель замечает противоречивые элементы соединения частей той или иной фигуры. Одно из самых известных произведений Эшера, изображающих «невозможное» пространство — это литография «Относительность» 1953 года, на которой изображен мир, который не подчиняется законам гравитации. 

 Признание 

Первая выставка работ Эшера состоялась в Гааге в 1924 году, а два года спустя эту экспозицию показали в Риме. Уже тогда критики называли Эшера талантливым рисовальщиком, но многие критиковали его работы как «слишком интеллектуальные». В 1934 году произведения художника были показаны на Всемирной выставке в Чикаго и тоже были положительно оценены критиками и коллекционерами. 

Икона эпохи: Мауриц Корнелис Эшер. Изображение № 5.

Литография «Рисующие руки», 1948 год

Однако настоящий успех пришел к Эшеру в 1950-х, после того, как прошли его большие выставки в США и Нидерландах. На родине художника его работы были представлены в Stedelijk — главном музее современного искусства в Амстердаме. Он начал читать лекции по всему миру, причем часто выступал в технических учебных заведениях — например, в MIT, так как часто сотрудничал с учёными. 

 

Таймлайн

1919

Эшер поступает в школу архитектуры и прикладного искусства в Харлеме

1922

После окончания школы отправляется в путешествие по Италии и Испании. Начинает создавать свои первые произведения

1924

Женится и начинает жить в Риме

1935

Уезжает из Италии из-за фашисткого режима, селится в Швейцарии

1937

Переезжает из Швейцарии в Брюссель. Делает первую ксилографию «Натюрморт и улица» в жанре «невозможной реальности»

1941

Переезжает в Барн (Нидерланды), где проводит время немецкой окуппации

1948

Литография «Рисующие руки»

1950

Первая персональная выставка в США

1953

Начинает преподавать

1953

Создает литографию «Относительность»

1954

Персональная выставка в музее Stedelijk

1955

Награжден орденом Оранских-Нассау — наградой, вручаемый монархом Нидерландов за особые заслуги перед государством

1958

Выходит книга Эшера «Регулярное деление плоскости»

1969

Заканчивает свою последнюю ксилографию «Змеи»

Икона эпохи: Мауриц Корнелис Эшер. Изображение № 6.

1970

Селится в доме престарелых в Ларене (Нидерланды)

 

 

Влияние

Икона эпохи: Мауриц Корнелис Эшер. Изображение № 7.

Наука

Эшер увлекался математикой (хотя специализированного образования у него не было), сотрудничал с учеными и часто иллюстрировал сложные математические теории. В 1952 году математик и профессор Принстонского университета Герман Вейль использовал работу Эшера «Симметрия» для оформления обложки своей книги, а физик Янг Чжэньнин проиллюстрировал свою гипотезу о применении законов симметрии в квантовой физике работой «Всадники». Кроме того, произведения Эшера иногда вдохновляли ученых: например, наброски художника помогли его брату, геологу Беренду Эшеру, сделать открытие в области кристаллографии.

 Икона эпохи: Мауриц Корнелис Эшер. Изображение № 8.

«Относительность», построенная из LEGO

Популярная культура

Первая выставка Эшера в США открылась в 1950 году, и после этого художник быстро стал популярным — его вашингтонский дилер продал к середине 1950-х 150 отпечатков работ Эшера. Однако широкой публике он стал известен в 1960-е: тогда недорогие постеры с его психоделическими работами покупали хиппи, которые затем украшали ими стены своих жилищ. Особенной популярностью пользовались копии литографии «Относительность»  — начиная с 1960-х она появлялась в СМИ, кино, сериалах, а в этом году трехмерную модель изображенного Эшером интерьера сделали из конструктора LEGO. Еще один недавний пример: в фильме «Начало» главные герои ходят по бесконечной лестнице, напоминающей ту, которую нарисовал известный график.

Что можно найти в продаже

 

www.lookatme.ru

Эйнштейн и современная картина мира

Многие и многие люди знают Альберта Эйнштейна только как автора теории относительности. Действительно, ее создание настолько изменило наши представления об окружающем мире и позволило сделать такой значительный шаг в понимании природы, что одного этого было бы достаточно, чтобы Эйнштейна поставить в один ряд с Ньютоном, Максвеллом и другими гигантами. Но вклад Эйнштейна в физику не исчерпывается одной теорией относительности. Были у него и другие работы, которые легли в основу современной науки.

Альберт Эйнштейн (1879-1955).

Бертран Рассел (1872-1970) - английский математик, философ, социолог. Активно выступал против фашизма, войн, агрессивных методов в международной политике. Один из инициаторов Пагоушского движения за мирное сосуществование и запрещение ядерного оружия.

Микроскоп Роберта Броуна для исследования движений частиц цветочной пыльцы под действием ударов молекул жидкости.

Положения пылинки Броун регистрировал через равные промежутки времени, заносил их на координатную сетку и соединял прямыми. Получалась ломаная линия, демонстрирующая случайные блуждания частицы.

Макс Карл Эрнст Людвиг Планк (1858-1947) - немецкий физик-теоретик. В 1900 году ввел в теорию излучения принципиально новое понятие - квант действия. Спустя пять лет Эйнштейн распространил идею квантов на процесс излучения и предсказал фотон.

Эрнст Мах (1838-1916) - австрийский физик и философ. Исследовал сверхзвуковые течения газа и установил, что его характеристики зависят от отношения скорости течения к скорости звука ('числа Маха' - М).

Джеймс Клерк Максвелл (1831-1879) - английский физик; создал теорию электромагнитного излучения и показал, что свет представляет собой один из его видов.

Генрих Рудольф Герц (1857-1894) - немецкий физик, основоположник электродинамики. В 1887 году создал генератор электромагнитных волн (вибратор Герца) и устройство для их регистрации (резонатор Герца).

Схема генератора и резонатора Герца. Вторичная обмотка повышающего трансформатора (индуктивность) с пластинами конденсатора, развернутыми в пространстве, образуют открытый колебательный контур.

Альберт Абрахам Майкельсон (1852-1931).

Интерферометр Майкельсона, сконструированный с целью обнаружить движение Земли относительно неподвижного эфира.

Прибор смонтирован на массивной каменной плите, которая плавает в кольцевом сосуде с ртутью.

Хендрик Антон Лоренц (1853-1928).

КЛАССИК ЕСТЕСТВОЗНАНИЯ

Теория относительности дала человечеству ряд важных и полезных применений. К сожалению, как это часто бывает, наряду с полезными применениями появились и другие, крайне опасные для человечества. Например, представления и идеи, основанные на специальной теории относительности, дали возможность создать ядерные реакторы - мощные источники энергии, нехватка которой все более ощущается на Земле. Но эти же идеи привели к созданию атомного и водородного оружия, обладающего неслыханной ранее разрушительной силой. Так нередко бывало в истории человечества. Даже простую спичку можно употребить и во благо и во вред. Можно с помощью спички затопить печь и приготовить обед, а можно поджечь дом. Применение открытия определяется не только знаниями, но и уровнем нравственности общества.

Обеспечим библиотеки России научными изданиями!

Эйнштейн осознавал всю глубину той опасности, которую представляло для человечества ядерное оружие. 11 апреля 1955 года, за неделю до смерти, он подписал манифест, составленный выдающимся философом и математиком Бертраном Расселом. В этом манифесте, адресованном всем государствам, содержался призыв уничтожить ядерное оружие. Ни одно из государств, обладающих им, не прислушалось к призыву двух великих мыслителей. Да и те страны, которые еще не имели ядерного оружия, но вели работы по его созданию, не обратили никакого внимания на манифест Эйнштейна - Рассела.

Специальная теория относительности во многом изменила наши представления о пространстве и времени. Через десять лет после ее создания Эйнштейн сделал следующий шаг. Он сформулировал общую теорию относительности. Про специальную теорию относительности можно сказать, что она объединила время и пространство. Общая теория относительности объединила время, пространство и вещество. Оказалось, что вещество меняет свойства пространства и ход времени. Предсказания общей теории относительности, сделанные Эйнштейном, были проверены и нашли свое полное подтверждение.

Но место Эйнштейна в современной физике связано не только с созданием теории относительности. Важнейшим его достижением стала теория броуновского движения. В 1827 году английский исследователь Роберт Броун поместил в каплю воды частички цветочной пыльцы и стал их рассматривать в микроскоп. Он увидел, что частички пыльцы не находятся в покое, а совершают беспорядочное движение. По-видимому, такое движение мельчайших частиц в жидкости наблюдалось и до Броуна, но наблюдатели считали, что движутся живые существа. Чтобы проверить такую возможность, Броун поместил пыльцу на несколько месяцев в спирт, а затем перенес эти мельчайшие частички в каплю воды и стал следить за их поведением в микроскоп. Однако они, как и свежая пыльца, совершали такие же беспорядочные движения. Причина этих движений оставалась непонятной в течение без малого восьмидесяти лет, пока в 1905 году не получила объяснения в работах Эйнштейна (одновременно и независимо теория броуновского движения была построена польским физиком Марианом Смолуховским).

Объяснение броуновского движения оказалось важным не только само по себе. После этой работы стало невозможно сомневаться в том, что все тела состоят из атомов и молекул. Наиболее упорные противники атомно-молекулярной теории (в том числе и некоторые выдающиеся физики) были вынуждены снять все свои возражения. Теория броуновского движения дала окончательное подтверждение атомно-молекулярного строения вещества.

Альберт Эйнштейн стал также одним из создателей квантовой теории, которая позволила понять процессы, протекающие внутри атомов, молекул и внутри атомного ядра. Он заложил краеугольные камни квантовой теории, можно сказать, посеял семена, из которых впоследствии выросло дерево квантовой теории. Однако дерево это в том виде, как оно выросло, ему не очень нравилось, он высказал ряд возражений против того, с чем был не согласен в квантовой теории. В частности, ему не нравился вероятностный характер описания событий в квантовой механике. В классической, доквантовой, физике на вопрос: "Что произойдет при таких-то и таких-то условиях?" следовал ответ: "Произойдет то-то и то-то". Квантовая механика на такой вопрос отвечает: "произойдет то-то и то-то с такой-то вероятностью". А может произойти и что-то другое с соответствую щей вероятностью. Эйнштейну классическая определенность, детерминизм, нравилась больше, чем вероятностное описание. Он говорил: "Бог не играет в кости". Были у него и другие возражения. Поэтому некоторые считают, что Эйнштейн - противник квантовой теории. Но не надо забывать, что он стал одним из ее создателей.

БРОУНОВСКОЕ ДВИЖЕНИЕ: КАК УВИДЕТЬ АТОМЫ И МОЛЕКУЛЫ

В 1905 году в нескольких выпусках немецкого физического журнала "Annalen der Physik" ("Анналы физики") появились статьи мало кому известного молодого физика, выпускника Цюрихского политехнического института. Автора звали Альберт Эйнштейн. В то время он работал экспертом швейцарского бюро патентов в Берне, то есть, как мы сказали бы теперь, работал не по специальности.

Журнал "Annalen der Physik" был в то время одним из наиболее авторитетных физических журналов не только в Европе, но и во всем мире. Альберт Эйнштейн и раньше печатался в этом журнале, но его статьи, опубликованные до 1905 года, привлекли внимание лишь небольшого числа знатоков, в числе которых были, правда, выдающиеся физики, например Макс Планк. Работы же 1905 года затронули самые основы физической науки и впоследствии принесли их автору бессмертную славу. Можно даже сказать более определенно: если бы Альберт Эйнштейн в 1905 году опубликовал только одну из нескольких выполненных в том году работ, этого было бы достаточно, чтобы выдвинуть его в первые ряды естествоиспытателей.

www.nkj.ru

Математика и живопись. Творчество Маурица Корнелиса Эшера

Поделиться статьей

Казалось, после Леонардо да Винчи, увлеченного решением геометрических задач, художники перестали видеть в «царице всех наук» искусство. Но спустя несколько столетий родившийся в 1898 году голландский художник Мауриц Корнелис Эшер попытался снова вернуть в живопись точность науки. Concepture публикует статью о творчестве художника.

Мориц Корнелис Эшер занимает особенное место в живописи XX века. В его работах нашел отражение самый широкий круг математических идей. Интересно, что в школе Эшер хуже всего занимался по рисованию и математическим дисциплинам. Да и начинал он впоследствии не как художник-математик, а как гравер, изображавший тонкости итальянских пейзажей. И только посетив Альгамбру, мавританский архитектурный ансамбль, Эшер, пораженный великолепием плиточных мозаик, решает поставить математику на службу искусству. Так начинаются его математические эксперименты в области живописи, которые чаще всего способны заинтересовать архитекторов, а не коллекционеров. 

Как это не странно, вдохновение для создания своих картин Эшер черпал не из окружающего мира, а из научных трудов по кристаллографии и плоскостной симметрии. Поэтому и его творчество было всецело подчинено изображению абстрактных математических законов, их визуальной интерпретации. Больше всего Эшера привлекали манипуляции с плоскостями и трехмерное пространство. Плодами его художественно-математических опытов стали знаменитые картины «Относительность», «Водопад», «Рисующие руки», «Картинная галерея» и многие другие. 

Например, причудливость картины «Относительность» возникает оттого, что любая поверхность нарисованного здания одновременно является и полом, и потолком, и стеной. Люди, идущие по лестницам в одном направлении, сразу спускаются и поднимаются. Здесь Эшер пытается проникнуть в суть оптической иллюзии, чем обычно занимаются ученые, а не художники. Другая известная картина "Водопад" изображает явление, невозможное в реальности - водопад как замкнутую систему, то есть питающий сам себя. Здесь Эшера занимает парадокс невозможных фигур. А в литографии «Рисующие руки» он изображает процесс самовоспроизведения, обращаясь уже к загадкам человеческого сознания. В 1958 году Эшер даже публикует теоретический труд «Последовательное деление плоскости», в котором описывает математический подход к художественному творчеству. 

В ответ на отказ собратьев по кисти называть его работы искусством, Эшер окрестил искусство XX века невразумительной пачкотней, смысл которой не в силах объяснить в первую очередь те, кто ее создает. Из всех современников он ценил только Сальвадора Дали, да и то лишь за профессионализм в рисовании, а не за причудливые образы.    

 

   

 

  

concepture.club

Общая Теория Относительности на пальцах™: sly2m

Одной из жемчужин научной мысли в тиаре знаний человечества с которой мы вошли в 21й век является Общая Теория Относительности (далее ОТО). Данная теория подтверждена бесчисленными опытами, скажу больше, нет ни одного эксперимента, где наши наблюдения хоть на чуть–чуть, хоть на кропалюшечку отличались бы от предсказаний Общей Теории Относительности. В пределах ее применимости, естественно.

Сегодня я хочу рассказать вам, что же это за зверь такой Общая Теория Относительности. Почему она такая сложная и почему на самом деле она такая простая. Как вы уже поняли, объяснение пойдет на пальцах™, посему прошу не судить слишком строго за весьма вольные трактовки и не вполне корректные аллегории. Я хочу, чтобы прочитав данное объяснение любой гуманитарий, без багажа знаний дифференциального исчисления и интегрирования по поверхности, смог уяснить себе основы ОТО. В конце концов исторически это одна из первых научных теорий, начинающих уходить вдаль от привычного повседневного человеческого опыта. С ньютоновской механикой все просто, на ее объяснение хватит и трех пальцев — вот сила, вот масса, вот ускорение. Вот яблоко на голову падает (все видели как яблоки падают?), вот ускорение его свободного падения, вот силы на него действующие.

С ОТО не все так просто — искривления пространства, гравитационные замедления времени, черные дыры — все это должно вызывать (и вызывает!) у неподготовленного человека массу смутных подозрений — а не по ушам ли ты мне ездишь, чувачок? Какие–такие искривления пространства? Кто их видел эти искривления, откуда они берутся, как подобное вообще можно себе представить?

Попробуем разобраться.

Как можно понять из названия Общей Теории Относительности, суть ее в том, что в общем–то все в мире относительно. Шутка. Хотя и не очень.

Скорость света это та величина, относительно которой относительны все остальные вещи в мире. Любые системы отсчета равноправны, куда бы они ни двигались, что бы они ни делали, даже крутились бы на месте, даже двигались бы с ускорением (что есть серьезный удар под дых Ньютону с Галилеем, которые думали, что только равномерно и прямолинейно двигающиеся системы отсчета могут быть относительными и равноправными, да и то, лишь в рамках элементарной механики) — все равно, всегда можно найти хитрый трюк (по–научному это называется преобразование координат), при помощи которого можно будет безболезненно переходить из одной системы отсчета в другую, практически ничего не теряя по пути.

Сделать такой вывод Эйнштейну помог постулат (напомню — логическое утверждение, принимаемое на веру без доказательств в силу своей очевидности) "о равенстве гравитации и ускорения". (внимание, здесь происходит сильное упрощение формулировок, но в общих чертах все верно — эквивалентность эффектов равноускоренного движения и гравитации находится в самом сердце ОТО).

Доказать сей постулат, или хотя бы мысленно его попробовать на вкус весьма просто. Пожалуйте в "лифт Эйнштейна".

Идея сего мысленного эксперимента в том, что если вас заперли в лифте без окон и дверей, то нет ни малейшего, совершенно ни единого способа узнать, в какой ситуации вы находитесь: или лифт продолжает стоять как и стоял на уровне первого этажа, и на вас (и все остальное содержимое лифта) действует обычная сила притяжения, т.е. сила гравитации Земли, или же всю планету Земля убрали у вас из–под ног, а лифт стал подниматься вверх, с ускорением равным ускорению свободного падения g=9.8м/с2.

Что бы вы ни делали, какие бы опыты ни ставили, какие бы измерения окружающих предметов и явлений ни производили — различить эти две ситуации невозможно, и в первом и во втором случае все процессы в лифте будут проходить совершенно одинаково.

Читатель со звездочкой(*) наверняка знает один хитрый выход из этого затруднения. Приливные силы. Если лифт очень (очень–очень) большой, километров 300 в поперечнике, теоретически можно отличить гравитацию от ускорения, измерив силу гравитации (или величину ускорения, мы же пока еще не знаем что есть что) в разных концах лифта. Такой огромный лифт будет чуть–чуть сжиматься приливными силами в поперечнике и чуть–чуть вытягиваться ими же в продольной плоскости. Но это уже пошли хитрости. Если лифт достаточно мал, никаких приливных сил вы обнаружить не сможете. Так что не будем о грустном.

Итого, в достаточно маленьком лифте можно считать, что гравитация и ускорение это одно и то же. Казалось бы мысль очевидная, и даже тривиальная. Чего тут такого нового или сложного, скажете вы, это же и ребенку должно быть понятно! Да, в принципе, ничего сложного. Вовсе не Эйнштейн это придумал, такие вещи были известны гораздо раньше.

Эйнштейн же решил выяснить как будет вести себя луч света в подобном лифте. А вот у этой мысли оказались очень далеко идущие последствия, о которых до 1907го года никто всерьез не задумывался. В смысле, задумывались, если честно, многие, но так глубоко заморочиться решился только один.

Представим себе, что мы посветили в нашем мысленном лифте Эйнштейна фонариком. Луч света вылетел из одной стенки лифта, из точки 0) и полетел параллельно полу в сторону противоположной стенки. Покуда лифт стоит на месте, логично предположить, что луч света ударится в противоположную стенку аккурат напротив начальной точки 0), т.е. прилетит в точку 1). Лучи света же по прямой линии распространяются, в школу все ходили, в школе все это учили и юный Альбертик тоже.

Несложно догадаться, что если лифт поехал вверх, то за время покуда луч летел по кабине, она успеет сместиться чуточку вверх.И если лифт будет двигаться с равномерным ускорением, то луч попадет на стенку в точке 2), то есть при взгляде со стороны будет казаться, что свет двигался как бы по параболе.

Ну, понято, что на самом деле никакой параболы нет. Луч как летел прямо, так и летит. Просто покуда он летел по своей прямой, лифт успел уехать чуточку наверх, вот нам и кажется, что луч по параболе двигался.

Все утрировано и преувеличенно, конечно. Эксперимент мысленный, от чего свет у нас летает медленно, а лифты ездят быстро. Тут пока все еще ничего особо крутого, это все тоже должно быть понятно любому школьнику. Подобный эксперимент можно провести у себя дома. Только нужно найти "очень медленные лучи" и годные, быстрые лифты.

Но Эйнштейн был реально гений. Сегодня многие его ругают, типа он вообще никто и ничто, сидел в своем патентном бюро, плел свои еврейские заговоры и тырил идеи у настоящих физиков. Большинство из заявляющих такое вообще не понимают кто такой Эйнштейн и что он сделал для науки и человечества.

Эйнштейн же сказал — раз "гравитация и ускорение эквивалентны" (еще раз повторю, он не совсем так сказал, я сознательно утрирую и упрощаю), значит в присутствии поля гравитации (например около планеты Земля) свет тоже полетит не по прямой, а по кривой. Гравитация искривит луч света.

Что само по себе было абсолютной ересью для того времени. Любой крестьянин должен знать, что фотоны — безмассовые частицы. Значит свет ничего "не весит". А потому на гравитацию свету должно быть пофиг, он не должен "притягиваться" Землей, как притягиваются камни, мячики и горы. Если кто помнит формулу Ньютона, гравитация обратно пропорциональна квадрату расстояния между телами и прямо пропорциональна их массам. Если у луча света нет массы (а ее у света действительно нет), значит никакого притяжения быть не должно! Тут современники начали коситься на Эйнштейна с подозрением.

А он, зараза, еще дальше попер. Говорит — не будем ломать крестьянам голову. Поверим древним грекам (привет, древние греки!), пусть свет распространяется как и раньше строго по прямой. Давайте лучше предположим, что само пространство вокруг Земли (и любого тела обладающего массой) гнется. Причем не просто трехмерное пространство, а сразу четырехмерное пространство–время.

Т.е. свет как летел по прямой, так и летит. Только эта прямая теперь нарисована не на плоскости, а лежит на как–бы скомканном полотенце. Да еще и в 3D. А комкает это полотенце как раз близкое присутствие массы. Ну, точнее присутствие энергии–импульса, если быть абсолютно точным.

Все ему — "Альбертик, ты гонишь, завязывай–ка поскорее с опиумом! Потому что ЛСД все еще не изобрели, а на трезвую голову такое точно не выдумаешь! Какое гнутое пространство, что ты мелешь?"

А Эйнштейн такой — "Я вам еще покажу!"

Заперся в своей белой башне (в смысле в патентном бюро) и давай математику под идейки подгонять. 10 лет подгонял, пока не родил вот это:

Точнее это квинтэссенция того, что он родил. В более развернутом варианте там 10 независимых формул, а в полном — две страницы математических символов мелким шрифтом.

Если вы решили взять настоящий курс Общей Теории Относительности, здесь вводная часть заканчивается и далее должны последовать два семестра изучения сурового матана. А чтобы подготовиться к изучению этого матана, нужны еще как минимум три года высшей математики, учитывая, что вы закончили среднюю школу и уже знакомы с дифференциальным и интегральным исчислением.

Положа руку на сердце, матан там не столько сложный, сколько нудный. Тензорное исчисление в псевдоримановом пространстве не сильно замороченная тема для восприятия. Это вам не квантовая хромодинамика, или, упаси Бог, не теория струн. Тут все четко, все логично. Вот вам пространство Римана, вот вам многообразие без разрывов и складок, вот метрический тензор, вот невырожденная матрица, сиди себе формулы выписывай, да индексы балансируй, следя чтобы ковариантные и контравариантные представления векторов с обеих сторон уравнения соответствовали друг другу. Это не сложно. Это долго и нудно.

Но не будем забираться в такие дали и вернемся к нашим пальцам™. По–нашему, по–простецки формула Эйнштейна означает примерно следующее. Слева от знака "равно" в формуле стоят тензор Эйнштейна плюс ковариантный метрический тензор и космологическая постоянная (Λ). Эта лямбда есть по сути своей темная энергия, которую мы сегодня до сих пор нифига не знаем, но любим и уважаем. А Эйнштейн об этом еще даже и не догадывается. Тут своя интересная история, достойная целого отдельного поста.

В двух словах, все, что стоит слева от знака "равно" показывает, как изменяется геометрия пространства, т.е. как оно гнется и скручивается под действием силы гравитации.

А справа, кроме обычных постоянных вроде π, скорости света c и гравитационной постоянной G находится буковка Т — тензор энергии–импульса. В ламмерских терминах можно считать, что это конфигурация того, как распределена в пространстве масса (точнее энергия, ибо что масса, что энергия, все равно эмце квадрат) для того, чтобы создавать гравитацию и гнуть ею пространство, дабы соответствовать левой части уравнения.

Вот, в принципе, и вся Общая Теория Относительности на пальцах™.

sly2m.livejournal.com

Теория относительности в картинках / Хабр

В своей статье я хотел бы рассказать о теории относительности. Эта теория не требуется в представлении. С самого своего создания она была окутана ореолом тайны, поскольку полностью подрывает наши привычные представления о пространстве и времени. Все мы в школе учили формулы теории относительности, но мало кто действительно понимал их. И это не удивительно, ведь человеку, чтобы по-настоящему понять какую-то теорию во всей её красоте, полноте и непротиворечивости, не достаточно знать формулы. Нужно иметь какой-то визуальный ориентир, нужна динамика, чтобы было что-то, что можно повертеть в руках. Я решил восполнить этот пробел и написал небольшую программку, в которой можно «повертеть в руках» пространство-время. Мы, как настоящие исследователи, с помощью небольших экспериментов попытаемся выяснить основные свойства этой загадочной материи. Под катом много картинок (и ни одной формулы). Сразу следует прояснить, что существует две теории относительности: — специальная теория относительности (СТО) рассматривает механику движения тел в пустом (не искривленном) пространстве-времени. — общая теория относительности (ОТО) изучает явления гравитации и искривление пространства-времени объектами, обладающими массой. Все описанное ниже относится к первой из них. Прежде, чем рассматривать пространство-время, давайте вспомним, что такое обычное евклидово пространство. И так, у нас имеется плоскость. В этой плоскости имеются некоторые геометрические фигуры: точки, отрезки. Так же у нас имеются две операции: параллельный перенос, и поворот. Давайте внимательно рассмотрим эти две операции.

Далее перейдем к рассмотрению так называемого пространства Минковского. В нем мы оставили параллельный перенос, но операцию поворота заменили на другую операцию. Как видите, при «повороте» каждая точка движется вдоль сереньких кривых. В результате все точки вытягиваются либо вдоль одной желтой прямой, либо вдоль другой. При таком «повороте» отрезки сохраняют свою форму и переходят в отрезки. Собственно, это и есть пространство-время. Давайте, будем считать, что горизонтальная ось — это пространство, а вертикальная — время. Будем считать, что время идет снизу вверх. Точка в пространстве-времени — это некоторое событие, которое произошло в некотором месте в некоторое время. А отрезок — это некоторый процесс. Например, если объект движется, то будем обозначать его движение отрезком. Чтобы Вы немного сориентировались, поставим первый эксперимент.

Первым делом будем рассматривать объекты движущиеся с небольшими скоростями (много меньше скорости света). Допустим, имеется некоторый неподвижный объект, например дерево. Нарисуем его с помощью вертикального отрезка.

Так же у нас имеется некоторый движущийся объект — автомобиль. Мы видим, что автомобиль едет навстречу дереву.

Нарисуем еще один движущийся объект. В результате получаем картину: Обратите внимание, что чем сильнее наклон, тем скорость объекта больше.

Так выглядит наша картина из неподвижной системы отсчета. А что мы увидим, если будем сидеть в автомобиле? Для этого нам нужно немножко «перекосить» нашу плоскость. Все правильно. Автомобиль теперь неподвижен, а дерево и человек движутся нам навстречу.

Точно так же мы можем перейти в систему отсчета, связанную с человеком. Для этого нам нужно «перекосить» пространство-время в другую сторону. В целом процесс перехода от одной системы отсчета в другую выглядит следующим образом: Такое преобразование называется «преобразованием Галилея». При этом каждая точка движется вдоль горизонтальной прямой. Это значит, что время одинаково во всех системах отсчета (время абсолютно).

Давайте теперь перейдем к бОльшим масштабам, «сжав» нашу ось X. На самом деле, переход от одной системы отсчета в другую есть ни что иное, как «поворот» в пространстве Минковского, а преобразования Галилея — это всего лишь предельный случай для маленьких скоростей. Мы видим, что точки теперь движутся не горизонтально. Т.е. время не является абсолютной величиной, а зависит от выбранной системы отсчета.

Допустим имеются два наблюдателя, один неподвижный, другой летит на своем космическом корабле от него с некоторой скоростью. Отметки на отрезке показывают, как идет время внутри объекта. Мы видим, что время неподвижного наблюдателя движется быстрее, чем у подвижного (один час у движущегося наблюдателя наступает позже, чем у неподвижного).

Но точно такую же картину видит и второй наблюдатель.

Вот так одна система отсчета переходит в другую Получается странная ситуация — два наблюдателя смотрят друг на друга, и они друг другу кажутся «заторможенными».

Чтобы выяснить, кто же из них на самом деле «тормоз», второй наблюдатель разворачивает свой космический корабль и летит обратно. Вместе они сверяют часы и выясняют, что у неподвижного наблюдателя прошло 5 единиц времени, а у подвижного — чуть больше 4. Т.е. наблюдатель, который «сделал крюк» в пространстве-времени потратил меньше своего внутреннего времени, чем неподвижный наблюдатель. Но то же самое, только с точностью до наоборот, произошло бы, если бы первый наблюдатель полетел на встречу второму. Вывод: у неподвижного наблюдателя время всегда идет быстрее, чем у движущегося.

Допустим, у нас имеется неподвижная космическая станция. От неё отстыковался некоторый корабль.

Перейдем в систему отсчета этого корабля. Далее от этого корабля отстыковался другой корабль.

Затем от второго корабля отстыковался третий. и так далее.

Таким образом я пытался изобразить процесс ускорения. Очевидно, что каждый следующий корабль будет двигаться с большей скоростью, чем предыдущий. Давайте теперь вернемся к первому кораблю и посмотрим. Напомню Вам, что наклон определяет скорость. Желтая линия, а точнее её наклон, показывает скорость света. По картинке видно, что каждый следующий корабль приближается к скорости света, но не может превысить её. Так же видно, что внутреннее время с увеличением скорости все больше замедляется. Из этого мы делаем вывод, что ничто не может двигаться со скоростью, превышающей скорость света.

Пусть теперь каждый корабль выпускает луч света. Мы видим, что свет в любой системе отсчета движется со скоростью света.

Две желтые линии очерчивают фигуру, называемую «световой конус». Световой конус разделяет пространство-время на две области, которые я отметил красным и зеленым цветами. Если какое-то событие находится в красной области, то мы будем говорить, что событие находится в пределах светового конуса. Это означает, что свет из начала координат успевает долететь до нашей точки. Если событие находится в зеленой области, то мы говорим, что событие находится за пределами светового конуса, и свет из начала координат не успевает долететь до этого события. Рассмотрим следующий пример. Имеется три одновременных события Давайте посмотрим, что произойдет, если мы будем менять систему отсчета. Мы видим, что в другой системе отсчета события вовсе не являются одновременными. Теперь события не просто смещаются во времени, они еще меняют свой хронологический порядок. Событие, которое произошло раньше некоторого события, в другой системе отсчета может произойти позже. Но как такое может быть? Не является ли это нарушением причинно-следственных связей? Напомню, что если событие находится за пределами светового конуса, это значит, что свет не может долететь до этого события за отведенное время. А поскольку ничто (никакой объект или сигнал) не может двигаться быстрее скорости света, получается, что событие, произошедшее в точке А, никак не может повлиять на событие в точке Б. То же самое справедливо и в обратную сторону. Событие в точке Б никак не может повлиять на событие в точке А. Про такие события говорят, что они не связаны причинно-следственными связями. Получается, что событие, находящееся за пределом светового конуса относительно данного, не связано с ним причинно-следственными связями. Все космические объекты: солнечные системы, галактики — находятся на гигантских расстояниях друг от друга. И даже двигаясь со скоростью света, нам потребуется очень много времени, чтобы преодолеть эти расстояния. Например, ближайшая к нам звезда (альфа-Центавра) находится на расстоянии 4 световых года, а ближайшая галактика (Большое Магелланово Облако) — уже 160 тысяч световых лет. Если до альфа-Центавра мы еще можем слетать «туда и обратно», то слетать «туда и обратно» в соседнюю галактику уже не получится. Точнее, улететь-то мы сможем, а вот когда вернемся, на Земле пройдет уже 320 тысяч лет (напомню, что внутри объекта, движущегося со скоростью света, время практически стоит на месте). Что же делать? Писатели-фантасты в своих произведениях очень ловко обходят это ограничение. Чего-только они не напридумывали: сверхскоростные двигатели, гипер-пространства, мультиплексы, искривление пространства-времени, прыжки через червоточины, черные дыры и т.д. На самом деле, проблема гораздо глубже, чем может показаться. Заключается она в том, что за пределами светового конуса НЕ МОГУТ существовать причинно-следственные связи. Иначе мы неизбежно придем к противоречиям.

Рассмотрим пример. Мы сидим на своей планете. В один прекрасный момент наши ученые изобретают «супер-телепортатор» способный телепортировать нас на любое расстояние за минимальное количество времени. Ну мы взяли и телепортировались в соседнюю галактику. Посидев в другой галактике, мы отправились на дальнейшее исследование космоса. Если мы теперь перейдем в систему отсчета, связанную с нашим кораблем, то увидим следующее. Мы видим, что наша исходная точка (планета Земля) сместилась в будущее. А поскольку законы природы во всех системах отсчета работают одинаково, то мы можем снова воспользоваться нашим «супер-телепортатором» и вернуться в собственное прошлое. Получается, что движение со сверх-световой скоростью, эквивалентно перемещению во времени, а оно тянет за собой кучу парадоксов. Таким образом, проблема космических путешествий не в том, что мы не умеем искривлять пространство-время или строить сверх-световые двигатели, а в том, что даже теоретическая возможность таких перемещений подрывает все причинно-следственные связи.

На этом в общем-то и все. Самое основное, кажется, рассказал. Надеюсь, было понятно. При написании статьи была использована программка (Ссылка на github)

habr.com


Смотрите также